
University of Toronto

MIE Y8888 Research Project

Implementation of a Multi-agent Coordination
and Motion Planning Protocol

Author:
John Pineros

Course Coordinators:
Hugh Liu

July 25, 2020

Contents

1 Introduction 2
1.1 Objective . 2
1.2 Scope . 2

2 Simulation Implementation 2
2.1 Modeling . 2
2.2 Simulation Setup . 6
2.3 Results . 8

3 Conclusion 13
3.1 Summary . 13
3.2 Future Works . 13

4 Acknowledgement 14

A Reference field equations 15
A.1 Partial Derivatives for Reference Field . 15
A.2 Partial Derivatives for perturbed Reference Field . 15

List of Figures

1 Mobile robot body frame definition. 3
2 Agent i sensing radius definition for linear velocity calculation. 5
3 Simulation code function structure. 7
4 Simulation flow diagram for MATLAB. 8
5 Gazebo pose measurement adjustment. 8
6 Simulation flow diagram for ROS. 9
7 MATLAB simulation results for a 4 agent scenario . 10
8 Computation time for 7 agent swarm. 11
9 Reference field angular rate calculation 4 agent scenario . 12
10 ROS simulation results for a 4 agent scenario . 12
11 Computation time for 4 agent swarm in ROS. 13

List of Tables

1 Turtlebot2 velocity constraints . 10
2 Start and end locations for all 4 agents . 10
3 Start and end locations for 7 agents . 10

1

1 Introduction

1.1 Objective

The goal of this project was to implement the multi-agent motion planning protocol presented in [1] in both
MATLAB and ROS. The results from the MATLAB simulation were used as a baseline and compared to
the performance of the same protocol implemented within ROS which is acting in place of actual hardware.
Based on the result of these two simulations recommendations for future work were made.

1.2 Scope

For this project the focus for the implementation was on 2D motion planning. The motion model for
the agent used was the unicycle robot with linear and angular velocity as the control inputs. For state
disturbance we looked at wind in the x and y axis. A focus was made on ensuring the simulation in
MATLAB could simulate as many agents as possible and to ensure the critical inter-agent distance d′m
was maintained. The focus of the ROS implementation was not to have a large number of agents but to
use a successful configuration from the MATLAB results and implement it on simulated hardware. By
implementing the simulation in ROS we could determine what potential limitations could be found which
were not present in MATLAB. The main paper used as reference for this project was [3].

2 Simulation Implementation

2.1 Modeling

The following section focuses on all the assumptions and mathematical models used to set up the multi-
agent motion planning protocol. The specific details of how the motion planning protocol was implemented,
depending on the simulation environment, are described in further detail in subsection 2.2.

2.1.1 Unicycle model

The agent state definition used was the unicycle model for both the state configuration and motion model.
The 2D unicycle model was defined as:

q = [x, y, θ]T (1)

With a motion profile having the following control inputs u1 and u2:

q̇i = [cos θi, sin θi, 0]Tu1 + [0, 0, 1]Tu2 (2)

The definition used for the control inputs u1 and u2 was defined in section 2.1.5. The wind disturbance
was modeled using the definition in [2].

w(x, y) = [wx, wy, 0]T (3)

The noise term has the properties of a Gaussian model, white noise with a known mean. The noise
covariance Pw, ∈ R2x2 was constant and bounded. Having a bounded noise covariance was important for
proving the stability of the EKF based observer model [2]. Since the noise term is described by a
Gaussian white noise process we assumed that for every time step noise term was treated as a constant.
The perturbed reference field uses the average noise term at a given point in space, given this information
we assumed the partial derivatives used for ϕ̇pi are only a function of the linear velocity and the
normalized reference field.
Along with the vehicle model we needed to define the class of agent we used in the simulation. From [1]
we used the definition for class A agents since agent i needed to have access to the state information qj of

2

any agent which is within its’ sensing region Ci. Neighbour state information is necessary because of the
bump function σij defined in section 2.1.4. Another class of agent was also defined in [1] called class B
agents. Class B agents do not have access to the state information of agents around them are also not
considered in this report.

2.1.2 Reference frame definition

For mobile robots we also have the body rates [p, q, r] which are body frame aligned [6]. They represent
the angular rotations for each of the principal axis. For the simulation implementation the inertial frame
and body frame have the axis definition shown in Figure 1. We are studying motion in the xy plane with
the orientation angle θ, and an angular rate θ̇ which we assume is equal to the body rate r. This
simplification is done because of the lack of rotation around the x and y axis.

Figure 1: Mobile robot body frame definition.

2.1.3 Measurement model

For each agent the state measurement model used was defined as follows:

zi = qi + vi (4)

With vi(t) representing the measurement noise with properties of White noise process, zero mean, and
a bounded covariance term Pvi [3].

2.1.4 Reference field derivation

The reference field equations used to attract or repel an agent from a given location were derived from
the concept of electric dipoles. Electric dipoles are defined as a pair of point charges with equal charge
but opposite sign. We define Q as the value of the point charge and the vector r as the 2D location of the
center for the point charge. With this information we can define an ideal electric dipole as:

F (r) = Q(rQ1 − rQ2) (5)

The derivation of the electric dipole flow fields was described in detail in [5]. The motivation for using
electric dipoles is based on the partial derivatives of the flow lines which converge to the origin of the
electric dipole [5]. The properties of a dipole like function where used to derive the general reference
equation:

p = λ(pT r)r− p(rT r) (6)

3

The parameter λ was introduced in [4] and it was used to describe if the reference field equation described
an attractive field, for which λ = 2, or repulsive for which λ = 0. A modification to the repulsive field was
done in [1] and it’s the definition used in this simulation. The repulsive field equation was redefined as:

Fi
xoj =

(xi − xj)√
(xi − xj)2 + (yi − yj)2

(7a)

Fi
yoj =

(yi − yj)√
(xi − xj)2 + (yi − yj)2

(7b)

Where [xj , yj] defines the global location of the object j being repelled. The attractive field definition is
the one presented in [2] and has the following definition:

Fr
gix =

−(xi − xgi)
(xi − xgi)2 + (yi − ygi)2

(8a)

Fr
gix =

−(yi − ygi)
(xi − xgi)2 + (yi − ygi)2

(8b)

The goal and starting locations for agent i must also be selected such that the agent to agent distance
must not be smaller than dm [3]. The final parameter is the bump function σj which is dependant on a
set of critical distances for class A agents. σj has the definition presented in [1]:

σij =


1 if dm ≤ dik < dr

adij
3 + bdij

2 + cdij+d if dr ≤ dik ≤ dc
0 if dik > dr

where the value of dik is defined as the global distance between agent i and agent k. Agent k is defined as
a critical agent which is inside of the sensing radius Rc but also meets the condition k ∈ {Ni|Jk < 0}. In
[2] Jk was defined as:

Jk = rTkiηi (9)

The coefficients which make up condition 2 for σij are defined as follows:

a = − 2

(dr − dc)3
(10a)

b = −3(dr + dc)

(dr − dc)3
(10b)

c = − 6drdc
(dr − dc)3

(10c)

d = −d
2
c(3dr − dc)
(dr − dc)3

(10d)

Where dc has the relationship dc ≤ Rc and dm < dr < dc. The parameter dm is a safe minimum distance
which relates radius ρ with a safety parameter ρε which is a safety boundary that agent i must keep w.r.t
an obstacle in space [1].

Having defined the attractive field, repulsive field and bump function the last thing is the modification
to the global reference field equation F ∗i presented in [1] to the new definition in [3] which was used in the
MATLAB and ROS implementation.

Fi = Π
jεNi

(1− σij)F rij + Σ
jεNi

σijF
i
oj (11)

4

2.1.5 Observer model and input velocity calculation

One of the components of the multi-agent motion planning protocol is the ability to compensate for an
external state disturbance defined in the unicycle model section. The EKF based observer model, first
presented in [2], is used to predict the future state of the current agent based on the previous control
input ui and ωi. From the EKF based observer model the important value for the system control input
was the predicted pose rate ˙̂qi which needed to be integrated to q̂i. With the integrated predicted pose q̂i
the linear velocity coordination [2] was defined as:

ui =

 −
1
µ log(Σ

jεNi|Ĵk<−δJ
e−µui|k) if d′m ≤ d̂ik < dε

uic if dε ≤ d̂ik
(12)

The key component of the linear velocity control law is the distance d̂ik. In global coordinates d̂ik is the
distance between agent i and a critical agent k. If there is an erroneous pose estimate from the EKF based
observer then it’s possible for the linear velocity to be calculated incorrectly causing agent i and agent k
to potentially collide. A visual representation of the distance d̂ik is shown in Figure 2. For agents which
are outside of the critical distance dε the linear velocity was calculated by scaling the gain Kui as follows:

uni = Kui tanh (‖r̂i − rgi‖) (13)

Figure 2: Agent i sensing radius definition for linear velocity calculation.

The angular velocity control input was calculated using:

ωi = −kωi(θ̂i − ϕpi) + ϕ̇pi (14)

It is important to note that the variables ϕpi and ϕ̇pi are calculated using the predicted state (x̂, ŷ). This
meant the reference field was calculated twice, once with the actual state of agent i used for the linear
velocity and once with the predicted state q̂i used for the angular velocity. The reference field was only
affected by the average wind disturbance, wi in the definition of the perturbed reference field. The
orientation of the perturbed reference field:

ϕpi = arctan(
F pniy
F pnix

) (15)

with the perturbed reference field, calculated at the predicted state q̂i, given as:

F pi =
uni Fi
‖Fi‖

−wi (16)

and the normalized perturbed reference field given as F pni =
F p
i

‖F p
i ‖

. The time derivative for the orientation

of the perturbed reference field has the following:

5

ϕ̇pi = (ATy .F
p
nix −A

T
x .F

p
niy)ui (17)

Where A is the gradient of the perturbed reference field:

Ax =


∂F p

nix
∂x̂ cθ̂i

∂F p
nix
∂ŷ sθ̂i

 (18a)

Ay =


∂F p

niy

∂x̂ cθ̂i

∂F p
niy

∂ŷ sθ̂i

 (18b)

The analytical calculation for the normalized perturbed reference field was calculated as:

∂F pnix
∂x̂

=

∂F p
ix

∂x (F pix
2

+ F piy
2
)1/2 − 1

2F
p
ix(F pix

2
+ F piy

2
)−1/2(2F pix

∂F p
ix

∂x + 2F piy
∂F p

iy

∂x)

F pix
2

+ F piy
2 (19a)

∂F pnix
∂ŷ

=

∂F p
ix

∂y (F pix
2

+ F piy
2
)1/2 − 1

2F
p
ix(F pix

2
+ F piy

2
)−1/2(2F pix

∂F p
ix

∂y + 2F piy
∂F p

iy

∂y)

F pix
2

+ F piy
2 (19b)

∂F pniy
∂x̂

=

∂F p
iy

∂x (F pix
2

+ F piy
2
)1/2 − 1

2F
p
ix(F pix

2
+ F piy

2
)−1/2(2F pix

∂F p
ix

∂x + 2F piy
∂F p

ix
∂x)

F pix
2

+ F piy
2 (19c)

∂F pniy
∂ŷ

=

∂F p
iy

∂y (F pix
2

+ F piy
2
)1/2 − 1

2F
p
ix(F pix

2
+ F piy

2
)−1/2(2F pix

∂F p
ix

∂y + 2F piy
∂F p

iy

∂y)

F pix
2

+ F piy
2 (19d)

The derivation of the partial derivatives for the perturbed reference field, and by extension the reference
field, are summarized in Appendix A.

2.2 Simulation Setup

For both simulations we are interested in meeting the safe inter-agent distance condition dik > d′m and
the safe convergence to the desired goal location qgi. During an initial implementation of the simulation
in MATLAB the symbolic toolbox was used to solve the partial derivatives in equation 18. This posed a
problem due to the significant increase in computation time caused by using a symbolic solution, specially
when the simulation used more than 1 agent. Using a symbolic solver also meant that when the multi-agent
protocol was transferred onto actual hardware an analytical solution would still need to be calculated. Due
to both of these constraints an analytical solution was derived and implemented.

For both simulations it was assumed that agents could not slowdown to a 0(m/s) velocity. This
assumption implies that agents who approach the goal location will always have a small linear velocity
command. This condition had to be implemented due to the smooth approximation of condition 1 in
equation 12. Depending on how close agent i is to the goal location it could slow down to a halt while
other agents are navigating around it. In the case where agent i stops within the sensing radius of agent j,
which is trying to get to its’ goal location, the smooth approximation of equation 12 could cause agent j
to slow down and potentially stop which is not desirable. The other factor was the state disturbance from
wind. When agent i reached a goal location it still needed to counteract the random wind disturbance
pushing it in a random direction. The value of wind was always a positive number which meant the

6

direction of the wind disturbance was always in the positve x, y direction. A small state command ensures
the agent will always push towards the goal location.

The structure of the functions used in the simulation code follow the flow diagram in Figure 3. The
splitting the reference field into sub-functions permits for rapid changes to the reference field calculations
or to the reference field gradient while maintaining the main simulation the same. This structure was
adopted for both the MATLAB and ROS simulations.

Figure 3: Simulation code function structure.

2.2.1 MATLAB

MATLAB was used as the first development environment to test out the multi-agent motion planning
protocol. The structure for the simulation has the flow diagram in Figure 4. This structure was designed
to study the computation time required per agent while leaving the pose update separate. A similar
computation format would eventually be used for the ROS implementation. Once the main simulation
was implemented the only script which needed to be changed defined the simulation parameters. This
flexibility permitted a rapid testing of various numbers of agents with their own desired goal locations.

2.2.2 ROS

The ROS simulation was set up to emulate implementation on a real life agent. For the actual agent pose
qi ROS uses the location of the agent within the Gazebo environment. If this protocol was implemented
on an actual robot the actual pose would need to be calculated using an external sensor to estimate the
ground truth, such sensors could be a motion capture system or a GPS for outdoor use. For the purposes
of this ROS implementation the measurement model in equation 4 was used. This assumption was used
to maintain the same covariance value as the MATLAB simulation. The modification between the actual
Gazebo pose and the wind disturbance used in the simulation is presented in Figure 5.

Having implemented the wind disturbance in this method does have one limitation. A physical wind
disturbance would imply that if the agent did receive a linear velocity command of 0(m/s) the agent should
still be physically moved by the wind based on the direction agent i is headed. This is not the case in
this implementation and it is a simplification which was done in order to maintain parity with what the
MATLAB simulation was set up to do. Once the pose measurement has been parsed and available for each
of the agents the actual state and the measured state was passed onto a separate function which acted as
the agent model. The agent model is presented as the top blue region in Figure 6. Decoupling the pose
measurement adjustment from the agent motion model gives the flexibility for the measurement to come
from a different source other than the modified pose from Gazebo. Similar to the MATLAB simulation the
agent control input calculation is done within the first blue region while publishing the agent command is
done in a separate loop. Splitting up the control calculation from the command publishing was done to
ensure that each agent had the linear and angular velocities commanded for a roughly equal amount of
time. In an early iteration of the simulation the command inputs for agent i where calculated and published
within the same loop. This initial iteration caused unequal publishing time for the system command which
meant the pose measurements between agents would be outdated.

7

Figure 4: Simulation flow diagram for MATLAB.

Figure 5: Gazebo pose measurement adjustment.

2.3 Results

In this section simulation results for both MATLAB and ROS are studied. MATLAB simulations allow us
to quickly identify the conditions which lead agents to have difficulty converging to a desired goal location.
ROS allow us to compare an ideal simulation predicted by MATLAB to what may occur with an actual
robot. To maintain parity between the two simulation environments the linear and angular velocities of the
agents where saturated to match the maximum limits allowed by the turtlebot2 mobile robotics platform
[8] summarized in table 1.

When comparing results for both the ROS and MATLAB simulations the starting and ending locations
summarized in table 2.

8

Figure 6: Simulation flow diagram for ROS.

2.3.1 MATLAB Results

For the MATLAB simulation the interest was in studying how effective the motion protocol is with large
numbers of agents. Figure 7 shows the combined path taken by all 4 agents as well as the relative distance
between agent 1 and the other 3 agents. From Figure 7d the critical distance d′m was conserved by every
agent which allowed them to reach the goal location without any collision.

Once the 4 agent case was developed and shown to be successful the next step was to identify the
maximum number of agents before the pose estimation error would cause the simulation to become unstable.
Computation time was the parameter which we could monitor and give an indicator of which number of
agents caused a simulation to fail. Computation time for a 1,2, 4 and 7 agent simulation was done. In
table 3 the starting and ending location of all agents was summarized. The starting and ending pose was
appended by the properties of the new agents. This ensured that when a working configuration stopped
being successful the only change made would be the addition of newer agents.

9

Maximum Minimum (m)

Linear Velocity 0.7 m/s -0.7 m/s

Angular Velocity π rad/s −π rad/s

Table 1: Turtlebot2 velocity constraints

Agent index x0 (m) y0 (m) xg (m) yg (m)

1 10 10 -10 -10

2 6.2 -6.2 -6 5

3 -10 15 10 -15

4 -9 -5 9 10

Table 2: Start and end locations for all 4 agents

(a) Combined path for 4 agents from MATLAB simulation. (b) Relative distance between agent 1 and agents 2,3,4.

Figure 7: MATLAB simulation results for a 4 agent scenario

Agent index x0 (m) y0 (m) xg (m) yg (m)

1 10 10 -10 -10

2 6.2 -6.2 -6 5

3 -10 15 10 -15

4 -9 -5 9 10

5 -20 17 -10 -7

6 -20 25 -10 -15

7 -20 32 -10 -22

Table 3: Start and end locations for 7 agents

Figure 8 shows the impact on computation time as the number of agents in the simulation increases.
With the current implementation going beyond 7 agents the computation time is already higher than the
desired step size of 0.01(s). A configuration of more than 7 agents always resulted in at least 1 agent
not being able to reach the goal location due to instability in the observer model pose prediction error.
From experimentation when the magnitude of the prediction error is consistently greater than 0.1m the
likelihood of the error covariance going unstable Was very high.

The limitation on the number of agents is due to the set up of the simulation. Recalling Figure 4
the linear and angular command calculation and pose update are done in separate loops. However, the

10

Figure 8: Computation time for 7 agent swarm.

calculation of the agent input commands is done inside of a for loop which means that the more agents
where added the computation time also began to increase linearly. A trend like this can be seen in 8 where
2 agents have an average computation time of 0.003s, and 7 agents have an average computation time of
0.011s. The ideal set up has command calculation for all agents done simultaneously to increase efficiency.
From Figure 8 the computation time for a single agent is roughly 0.0015s which is well below the desired
step size.

As mentioned in the derivation section, an analytical solution for the reference field gradient was used
in part to calculate the angular rate for each of the agents. We can see from Figure 9 that the angular rate
is fairly low except for situations where the agent is really close to the goal location or the agent is trying to
avoid collisions with its’ neighbour. Having a low value for angular rate means the steady state assumption
for lemma 1 in [1] is met. It’s also important to notice the switching behaviour of the angular rate of the
reference field, in particular the closer the agent gets to the desired location. To avoid the reference field
functions to become undefined a pose error check derror = ‖[xi − xg, yi − yg]‖ was used to check when
derror < 1.5m. When this condition was true the agent was considered to be at the goal location. If this
check wasn’t implemented we can see in Figure 9 that the angular rate starts to go unstable causing the
simulation to fail. The linear velocity is also not set to 0(m/s) at the goal location since there is still a
wind state disturbance which would push the agent away.

2.3.2 ROS Results

The results of the ROS simulation show improvements in the computation time for each agent as well
as a path which is not as sharp as the MATLAB simulation. The only difference not being simulated
in MATLAB are mechanical properties of the TurtleBot2 such as moment of inertia about the yaw axis.
It was also observed when a linear and angular velocity was published there was a small delay in the
TurtleBot2 actually moving. This delay can also cause the simulation to be smoother since the TurtleBot2
does not react instantly to rapid changes in input commands. Similar to the MATLAB simulation the safe
inter-agent distance d′m was also maintained and the agents safely converged to a desired goal pose. Both
of these results are summarized in Figure 10.

One interesting point to compare between the ROS and MATLAB simulations are the computation
times taken by the 4 agent case. The ROS clock was used to generate a tik and tok counter to check how
long the computation of input commands for all 4 agents as seen is Figure 6.Within the ROS environment
the computation time for all 4 agents was around 0.002(s) which is roughly a third of the computation
time taken by the MATLAB simulation. The downside of the simulation in ROS is the environment is

11

Figure 9: Reference field angular rate calculation 4 agent scenario

(a) Combined path for 4 agents from ROS simulation. (b) Relative distance between agent 1 and agents 2,3,4.

Figure 10: ROS simulation results for a 4 agent scenario

not as flexible when it comes to rapidly modifying the number of agents in the simulation. One area to
be explored would be to compare the 7 agent case to see if there is a similar ceiling for computing the
command for all agents.

12

Figure 11: Computation time for 4 agent swarm in ROS.

3 Conclusion

3.1 Summary

In this project we studied the performance and scale-ability of the motion planning protocol presented in
[1] by implementing it in both ROS and MATLAB environments. The upper limit on the number of agents
for the MATLAB simulation was found experimentally while the ROS simulation was used to represent the
algorithm implementation on actual hardware. Several simplifications such as agent yaw rate definition,
reference field gradient calculation, and wind disturbance implementation were done in order to generate
a baseline result of the motion planning protocol.

3.2 Future Works

From the experimental results the following areas for future work were identified. The concept of a
connectivity radius was presented as an ideal region where agent i always has the state information for
agent j, which is considered a critical if the condition Jk < 0 is met. Currently the work presented in
[7] focuses on characterizing the noise from measurements between agents. In actuality connectivity has a
noise component but a signal reliability as well which can be affected by the environment or failure in the
hardware. A further improvement would be to add inter-agent connectivity loss as a potential disturbance
and implement a fault tolerance algorithm to compensate for loss in connectivity. A potential refinement
can be made to the repulsive component of the reference field by defining a new constant which quantifies
what the status of a connection between agent i and agent k is.

A scenario not looked at was the extension of the reference field to 3 dimensions. A potential starting
point is presented in [9] where a refinement can be proposed to their equation of the potential function
which defines the shape of the gradient as a cone. One limitation with their proposed field function is the
inability for the the agent to move above or bellow the field, only around it. By combining the reference
field function in [9] with the properties presented in [5] a new reference field definition can be implemented.

Lastly, as mentioned in the ROS simulation setup portion of the report, the wind disturbance was
added to the pose of the Gaszebo simulation. A true wind disturbance would act as a separate physical
force on the mobile robot. To improve the quality of the simulation an actual wind model should be added
which is constantly applying a disturbance on the ground robot.

13

4 Acknowledgement

Thank you Dr.Hugh Liu and the team at the Flight Systems and Control Labs for their feedback and
recommendations during the project.

14

A Reference field equations

A.1 Partial Derivatives for Reference Field

The reference field was made up of two components, the attractive and the repulsive component. The
partial derivative for the attractive field was:

∂Fgix
∂x

=
(xi − xgi)2 − (yi − ygi)2

((xi − xgi)2 + (yi − ygi)2)2
(20a)

∂Fgix
∂y

=
2(xi − xgi)(yi − ygi)

((xi − xgi)2 + (yi − ygi)2)2
(20b)

∂Fgiy
∂x

=
2(xi − xgi)(yi − ygi)

((xi − xgi)2 + (yi − ygi)2)2
(20c)

∂Fgiy
∂y

=
(xi − xgi)2 − (yi − ygi)2

((xi − xgi)2 + (yi − ygi)2)2
(20d)

The partial derivative for the repulsive field was:

∂F ixoj
∂x

= ((xi − xj)2 + (yi − yj)2)−1/2(1− (xi − xj)2((xi − xj)2 + (yi − yj)2)−1) (21a)

∂F ixoj
∂y

=
−1

2((xi − xj)2 + (yi − yj)2)3/2
(21b)

∂F iyoj
∂x

=
−1

2((xi − xj)2 + (yi − yj)2)3/2
(21c)

∂F ixoj
∂x

= ((xi − xj)2 + (yi − yj)2)−1/2(1− (yi − yj)2((xi − xj)2 + (yi − yj)2)−1) (21d)

A.2 Partial Derivatives for perturbed Reference Field

The perturbed reference field has the following partial derivatives:

∂F pix
∂x

=
uni (∂Fix

∂x (F 2
ix + F 2

iy)
1/2 − Fix 1

2(F 2
ix + F 2

iy)
−1/2(2Fix

∂Fix
∂x + 2Fiy

∂Fiy

∂x))

F 2
ix + F 2

iy

(22a)

∂F pix
∂y

=
uni (∂Fix

∂y (F 2
ix + F 2

iy)
1/2 − Fix 1

2(F 2
ix + F 2

iy)
−1/2(2Fix

∂Fix
∂y + 2Fiy

∂Fiy

∂y))

F 2
ix + F 2

iy

(22b)

∂F piy
∂x

=
uni (

∂Fiy

∂x (F 2
ix + F 2

iy)
1/2 − Fiy 12(F 2

ix + F 2
iy)
−1/2(2Fix

∂Fix
∂x + 2Fiy

∂Fiy

∂x))

F 2
ix + F 2

iy

(22c)

∂F piy
∂y

=
uni (

∂Fiy

∂y (F 2
ix + F 2

iy)
1/2 − Fiy 12(F 2

ix + F 2
iy)
−1/2(2Fix

∂Fix
∂y + 2Fiy

∂Fiy

∂y))

F 2
ix + F 2

iy

(22d)

15

References

[1] Dimitra Panagou, A Distributed Feedback Motion Planning Protocol for Multiple Unicycle Agents of
Different Classes., IEEE Transactions On Automatic Control, Vol 62. March 2017

[2] Dimitra Panagou, Robust Semi-Cooperative Multi-Agent Coordination in the Presence of Stochastic
Disturbances, IEEE Transactions On Automatic Control, Vol 62. March 2017

[3] Dimitra Panagou, Kunal Garg, A Robust Coordination Protocol for Safe multi-agent motion planning.,
University of Michigan Ann Arbour. Guidance, Navigation and Control Conference. January, 2018.

[4] Dimitra Panagou, Herbert Tanner, Kostas Kyriakopolous Control of Nonholonomic Systems Using
Reference Vector Fields, IEEE Conference on Decision and Control and European Control Conference,
December 2011.

[5] Dimitra Panagou, Herbert G, et.al, Dipole-like fields for Stabilization of systems with Pfaffian Con-
straints, IEEE International Conference on Robotics and Automation. May 2010.

[6] Hugh H.T.Liu , Peter Grant, etc.AER1217 Lecture Notes, University of Toronto Institute for Aerospace
Studies, 2020

[7] Huang, M. and Manton, J.H. Coordination and consensus of networked agents with noisy measurements:
Stochastic algorithms and asymptotic behaviour, SIAM Journal on Control and Optimization. Vol. 48,
No.1, Feb 2009.

[8] Thomas L.Harman ROS Robotics By Example, Packt Publishing. 2016

[9] Xia Chen, Jin Zhang The Three-dimention Path Planning of UAV Based on Improved Artificial Po-
tential field in Dynamic Environment, Fifth International Conference on Intelligent Human-Machine
Systems and Cybernetics. 2013.

16

	Introduction
	Objective
	Scope

	Simulation Implementation
	Modeling
	Simulation Setup
	Results

	Conclusion
	Summary
	Future Works

	Acknowledgement
	Reference field equations
	Partial Derivatives for Reference Field
	Partial Derivatives for perturbed Reference Field

